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1 Introduction

1.1 Introduction
o Well established nonparametric approach to inference: Fisher, 1935; Pitman, 1937; Pitman, 1938.

e (In general) it requires less assumptions about the data generating process than the paramet
counterpart.

e Very good inferential properties, typically:

— exactness (i.e. exact control of the type I error)
— asymptotically optimality and convergence to the parametric counterpart when it does exist.

o Fisher exact test is a prototypical example, but
e the general approach has restricted applicability without the support of a computer.

1.2 Renewed interest toward permutation testing
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o A milestone: Westfall and Young (1993). Resampling-Based Multiple Testing: Examples and Methods

for p-value Adjustment. Wiley.
o Many actives areas of research adopt these methods in their daily statistical analysis (e.g. genet
and neuroscience: Nichols and Holmes (2002); Pantazis et al. (2009); Winkler et al. (2014)).

e Permutation approach:

— Ideal for randomized experimental design

— deals with very complex models, without formal definition of the data generating process.
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1.3 The package flip

It is on CRAN and on github (https://github.com/livioivil/flip)
To install the github version type (in R):

library(devtools)
install_github('livioivil/flip')

Before we start

#clean the memory
rm (list=1ls ())

# We customize the output of our graphs a little bit

par.old=par ()

par (cex.main=1.5, lwd=2, col="darkgrey", pch=20, cex=3)

# par (par.old)

palette (c ("#FF0000", "#0OAO8A", "#FFCCOO", "#445577", "#45abff"))

# customize the output of knitir
knitr :: opts_chunk$set (fig.align="center")#, fig.width=6, fig.height=6)

1.4 The Age vs Reaction Time Dataset

The reaction time of these subjects was tested by having them grab a meter stick after it was released by
the tester. The number of centimeters that the meter stick dropped before being caught is a direct measure
of the person’s response time.

The values of Age are in years. The Gender is coded as F for female and M for male. The values of
Reaction.Time are in centimeters.

(data are fictitious)
To read the data
data(reaction,package = "flip")

# or download it from: https://github.com/livioivil/flip/tree/master/data
# str (reaction)

We plot the data

plot (x=reaction$Age,y=reaction$Reaction.Time,pch=20,co0l=2,cex=2)
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1.5 Measuring the dependence between two variables
we define:

o X = Age

e Y = Reaction.Tvme

We review some famous index to measure the (linear) dependence among two variables

1.5.1 Covariance and Variance

Covariance between X and Y:

Ozy = n
e values between —oo and oo
e 0zy =~ 0: there is no dependency between X and Y
o 0gy >> (<<)0: there is a strong positive (negative) dependency between X and YV

Variance of X

n 12
2 i:1(zi7m)

Ogw = 04 -

Standard Deviation of X:

Oxx = \/Ozax = Og



1.5.2 Correlation

With the Covariance it is difficult to understand when the relationship between X and Y is strong/weak.
We note that

—0,0y < gy < 0,0, is quivalent to —1 < 2= <]

Correlation between X and Y:
p _ oxy _ ZZ;I(%—@)(ZM—@)
TY T G0y \/22;1(3”_3_”)2\/22;1(3/1_17)2

o values between —1 and 1
o pgzy = 0: there is no dependency between X and Y
o pzy =~ 1(—1): there is a strong positive (negative) dependency between X and YV

1.5.3 Linear Trend, the least squares method

We describe the relationship between
Reaction.Time and Age with a straight line.

E(Reaction.Time) =~ By + f1Age
E(Y)=fo+ /X

Let’s draw a line ‘in the middle’ of the data.
The least-squares estimator

We look for the one that passes more ‘in the middle’, the one that minimizes the sum of the squares of the
residues:
Bo and Bl SuAch thAat
iy (yi — (Bo + Pry))? is minimum.
Estimates:
« Angular coefficient: f; = 22 = p,, % = % — 0.2064719

i=1

Intercept: [y =7 — 317 = 10.3013483
o Response (estimated y): §; = 5o + f1z;
o Residuals (from the estimated response): y; — (8o + f12:) = vi — Ui

n

and therefore the least squares are the sum of the squared residuals: Y7 (y; — fo + f12:)% = Yo, (i — )

A graphical representation:

model=Im(Reaction.Time~Age, reaction)
coefficients(model)

## (Intercept) Age
## 10.3013483 0.2064719

plot(reaction$Age,reaction$Reaction.Time, 20, 2, 1)
coeff=round(coefficients(model),1)
title(paste("Y=",coeff[1],"+",coeff [2],"*X"))

abline (model, 1)



Y=10.3+0.2*X

reaction$Reaction.Time
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2 Permutation approach to Hypothesis Testing

2.0.1 Some remarks

Let’s note that all the measures above does not make any assumptions on the random process that generate
them.

Let now assume that Y - and possibly X - is generated by a random variable.

Further minimal assumptions will be specified later.

The question: Is there a relationship between Y and X7

We estimated 3 = 0.2064719

But the true value f; is really different from 0 (i.e. no relationship)?
Otherwise, is the difference from 0 due to the random sampling?

o Null Hypothesis Hy : 81 = 0 (the true 1, not its estimate 51!). There is no relationship between
X and Y.

e Alternative Hypothesis H; : 31 > 0 The relationship is positive.

Other possible specifications of Hy : 1 < 0 and, more commonly, Hy : 1 # 0.



2.1 Permutation tests - in a nutshell

As a toy example, let use a sub-set of the data:

##  Age Gender Reaction.Time

## 2 50 F 20.42
## 3 30 M 11.62
## 4 60 F 22.27

reactionREd$Reaction.Time
12 14 16 18 20 22

I I I I I I I
30 35 40 45 50 655 60

reactionREd$Age

e If Hy is true: there is no linear relationship between X and Y

e Therefore, the trend observed on the data is due to chance.

e Any other match of x; and y; was equally likely to occur

e I can generate the datasets of other hypothetical experiments by exchanging the order of the observa-
tions in Y.

e How many equally likely datasets could I get withX and Yobserved? 3x2x1 = 3! = 6 possible datasets.

Remark: Here we only assume that y is a random variable. The only assumption here is the exchangeability
of the observations: the joint density f(y1,. .., yn) does not change when the ordering of y1, . .., y, is changed.



2.1.1

Reaction.Time

Reaction.Time

20
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12
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All potential datasets

Y=0.97 + 0.37 *X

Age

Y=2.82+0.33*X

Age

Reaction.Time

Reaction.Time

20

16

12

20

16

12

Y=32.92 + -0.32 *X

Age

Y=24.12 + -0.13 *X

Age

Reaction.Time

Reaction.Time

20

16

12

20

16

12

Y=18.57 + -0.01 *X

Age

Y=29.22 + -0.24 *X

Age

2.1.1.1 1In our data set We apply the same principle to the complete dataset. ..

How many permutations of the vector y, ...

big, perhaps not too big ...

This is too big, definitely!

We calculate a smaller (but sufficiently large) B of random permutations.

here some example

Age vs a permutations of Reaction.Time

,Yn are possible? n! = 10! = 3628800.
but what happen with, for example, n = 207 We got 20! = 2.432902¢ + 18.



Y=24.27 + 0.49 *X Y=37.75+0.21*X
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We repeat 10* times and we look at the histogram of the f;

# beta_1 estimated on the observed data:
betal=coefficients(lm(Reaction.Time~Age, reaction)) [2]

Reaction.Time

Reaction.Time

40 60 80

20

40 60 80

20

Y=35.06 + 0.27 *X

Age

Y=20.22 + 0.58 *X

20 40 60 80

Age

# function that permutes the y values and calculates the coeff beta_1

my.beta.perm <- function(Y,X){
model=1m(sample (Y)~X)
coefficients(model) [2]

}

#replicate 1t B-1 times

beta.perm= replicate(B,my.beta.perm(reaction$Reaction.Time, reaction$Age ))
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2.1.2 How likely WAS (9057

(before the experiment!)

How likely was it to get a < 395 value among the many possible values of 3° (obtained by permuting data)?

Remarks:
o [0 < 39%s (closer to 0): less evidence against Hy than 390

o 3P > pB9Ps: equal or more evidence towards H; than £¢%

2.1.3 Calculation of the p-value

Over B=10* permutations we got 9816 times a Bi‘b < bes.
Axb~ Aobs
The p-value (significance) is p = % = 0.0186

(B¢ counts as a random permutation)

2.1.4 Interpretation
The probability of p = P(Bf > B = 0.206 |Hp) is equal to p = 0.0186, i.e. very small.
So, it was unlikely to get a value like this IF Hj is true.

Neyman-Pearson’s approach has made common the use of a significance threshold for example o = .05 (or
= .01). When p < « rejects the hypothesis that there is no relationship between X and Y (Hp). If so, we
are inclined to think that Hj is true (there is a positive relationship).
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e Type I error: False Positive
the true hypo is Hp (null correlation), BUT we accept H; (correlation is positive)
e Type II error: False Negative
the true hypo is Hy (positive correlation), BUT we do not reject Hp (null correlation)

2.2 To sum up
p-value: proportion of experiments providing equal or more evidence against Hy with respect to observed
data.

To compute it, we need the Orbit O and a Test statistic (T': R™ — R) quantifies the evidence against
Hy

e higher values provide more evidence against Hy
e compute a test statistic for each element of the Orbit O, this induces an ordering on O.

In our example: T' = () = 6,,,/6,, is the (estimated) slope.
Higher the slope, higher the evidence for H;.

Type I error control

We want to guarantee not to get false relationships (a few false positives), better to be conservative. To
make this, we want to bound the probability to make a false discovery:

P(p — value < a|Hp) < «

We built a machinery that in the long run (many replicates of the experiment) finds false correlations with
probability a (e.g. 0.05 = 5%).

2.2.1 We make it in flip

library(flip)

( flip(Reaction.Time~Age, reaction, 1))
##

## Test Stat tail p-value

## Reaction.Time t 2.633 > 0.0120

## compare also with
# flip(Reaction.Time~Age,data=reaction,tail=1,statTest "cor")
# flip(Reaction.Time~Age, data=reaction,tail=1,statTest = "coeff")

plot(res)

11
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Type I error control

We want to guarantee not to get false relationships (a few false positives), better to be conservative. To
make this, we want to bound the probability to make a false discovery:

P(p — value < a|Hp) < «

We built a machinery that in the long run (many replicates of the experiment) finds false correlations with
probability « (e.g. 0.05 = 5%).

2.2.2 Composite alternatives (bilateral)

The hypothesis Hy : 81 > 0 (the relation is positive) must be justified with a priori knowledge.

More frequently, the Alternative hypothesis is appropriate: Hj : 1 # 0 (there is a relationship, I do not
assume the direction)

I consider anomalous coefficients estimated as very small but also very large (‘far from 0’). The p-value is
Axb pobs

p= #(81 E|51 D _ 0.0365

(remark: the observed test stat is included among the permuted one)

In flip:

library(flip)
(res=flip(Reaction.Time~Age,data=reaction,tail=0,perms=10000))

12



#i#
#i# Test Stat tail p-value
## Reaction.Time t 2.633 >< 0.0385

plot(res)
Reaction.Time
o
O J—
[o0]
S _
© Observed
test

statistic

Frequency
400
|

200
I

-10 -5 0 5

Test Statistics

2.3 A more formal approach

(see also Pesarin, 2001; Hemerik & Goeman, 2017)

Let Y be data taking values in a sample space ). Let II be a finite set of transformations 7 : ) — ), such
that II is a group with respect to the operation of composition of transformations, that is:

e it contains identity,
e every element has an inverse in the group,
e closure: if my,my € II: m omg € 11

(e.g. II set of all possible permutations)

Null Hypothesis
H() 1Y € QO

Randomization Hypothesis Under the null hypothesis, the distribution of Y is invariant under the trans-
formations in IT; that is, for every 7 in I, 7Y and Y have the same distribution whenever Y has distribution
Pin QQ.

13



(See also Lehmann, E. L., & Romano, J. P. (2006). Testing statistical hypotheses. Springer Science &
Business Media.)

Test statistic T(Y): R* - R
T®)(Y) is the [(1 — a)|II| ]-th sorted value of T'(7Y)
Define the test:

0 if otherwise

i (k)
o7 = {1 FT(Y) > TH(Y)

Theorem: Under Hy, Ep(¢(Y)) = a, that is P(T(Y) > T") < a.
Proof
By construction, .y ¢(7Y) = |[II|a. Therefore |Ilja = Ep(}_ oy @(7Y)) = > cn Ep(o(rY))

Next, by the null hypothesis: Ep(¢(Y)) = Ep(¢(7Y)),
so that o =) . Ep(é(Y)) = [II|Ep(4(Y)) gives
Ep(@(Y)) =

(See also Lehmann, E. L., & Romano, J. P. (2006). Testing statistical hypotheses. Springer Science &
Business Media.)

More about permutation testing

Orbit of O:
O={rY :mrell} C ).

(losely) the set of all samples having the same likelihood under Hy.

O ={my: f(ry) = f(¥)}
(|O| number of elements of O)

If we assume exchangeability of observations, then:

O = {all permutations of the observed data y} = {y" : 7" oy}

Remark about assumption of exchangeability: This means that, Under the Null Hypothesis, observa-
tions within subject are assumed to be exchangeable: e.g. f(y1,vy2) = f(y2,vy1)-

This assumption is always true as long as observations:

o are identically distributed,

e have the same dependence, e.g. the same correlation.

Parametric t-test and linear models assumes independence (more stringent than ‘same dependence’), and
normality of the errors, i.e. more severe assumptions than permutation approach.

When normality is not met, the parametric approach only provides asymptotic control of the tye I error,
while permutation approach provides exactness.

An Intuition about the proof for an alternative proof of the control of the type I error
fyno) fly) _ fly) 1

f(¥|0) = f(0) - fO)  f(Uyeoy) O]

i.e. each permutation is equally likely in the Orbit O.

VyeO

14



(due to group structure)

E(o(Y)ly € O, Ho) =
P(T(y) > TW|y € O, Hy) =

/T,ff e -

Z y)>T)/|0]<a YO
€O

And now E(¢ = [p E(o(y)ly € O, Hy)dy

2.3.1 Properties (see Pesarin, 2001)

The theorem above proves that the permutation tests have exact control of the type I error, i.e. P(p —
value < a|Hy) = a assuming o € {1/]0|,2/|0|,...,1} - don’t forget that the orbit O is a finite set and the
cumulative distribution of T'(7y) is a step function.

When « has different values, the test is (slightly) conservative (or one need to use randomized tests that are
not discussed in this course).

Further properties:
o The permutations tests are Unbiased: P(p — value < a|Hy) > «

e The test is Consistent: P(p — value < «|H;) — 1 when n — oo

o The test converges to the parametric counterpart (when it exists)

2.4 A comparison (and relationships) with parametric linear model

We can see that the histogram of the statistical tests (calculated on the permuted data) is well described by
a Gaussian (normal) curve.

hist(beta.perm,50, TRUE, 2)
curve (dnorm(x,mean(beta.perm) ,sd(beta.perm)), TRUE, 1, 3)
points(betal,O, 3, 1)

15
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2.4.1 The (simple) linear parametric model

We assume that the observed values are distributed around true values Sy + 51 X according to a Gaussian

law:

Y = linear part + normal error
Y = 50 + ﬂlX +e

Assumptions of the linear model

e the y; = Bo + Bix; + €; the relationship between X and Y is truly linear, less than the error term ¢;
e g,~ N(0,0%), Vi =1,...,n errors have normal distribution with zero mean and common variance

(homoschedasticity: same variance).

2.4.2 Hypothesis testing

If these assumptions are true,

B~ N(Br,0%/ 3 (z: — 7)?)

We calculate the test statistic:

t:

std.dev B Voo wi—9)?/ > (@i—)2/(n—2)

If Hy: 51 =0, t~t(n—2)is true

On reaction data and H; : 81 # 0 (bilateral alternative)

16



model=1m (Reaction.Time ~ Age, reaction)
summary (model)

##

## Call:

## lm(formula = Reaction.Time ~ Age, data = reaction)
##

## Residuals:

## Min 1Q Median 3Q Max

## -6.535 -3.364 -0.272 2.676 7.839

#i#

## Coefficients:

#it Estimate Std. Error t value Pr(>ltl)

## (Intercept) 10.30135 4.04407  2.547 0.0343 x*

## Age 0.20647 0.07841 2.633 0.0300 =*

## ———

## Signif. codes: O ’*xx’ 0.001 ’**x’ 0.01 ’x> 0.05 ’.” 0.1 > ’ 1
##

## Residual standard error: 4.678 on 8 degrees of freedom
## Multiple R-squared: 0.4643, Adjusted R-squared: 0.3973
## F-statistic: 6.934 on 1 and 8 DF, p-value: 0.03003

Similar result, but much more assumptions!

2.4.3 Assumptions of a permutation test

What model do we assume in a permutation test?
Under the null hypo: Hy: f(y) = f(y|z) Va
Under the alternative hypo no assumptions. in order to have power we hope that:

Hy: E(ylx) = Bo + B1z; with 1 # 0 and for some x
that is:
Hy: E(yz) # E(z)E(y)

No other assumptions on the distribution of f(y|z) (normality, nor finite moments)

2.5 Permutationally equivalent tests

set.seed(1)

( flip(Reaction.Time~Age, reaction, "cor"))
H##
## Test Stat tail p-value

## Reaction.Time cor 0.6814 >< 0.0410

set.seed(1)
( flip(Reaction.Time~Age, reaction, "t"))

17



##

#i# Test Stat tail p-value
## Reaction.Time t 2.633 >< 0.0410

plot(res_cor@permT,res_t@permT, 20, 2)

res_t@permT

-0.5 0.0 0.5

res_cor@permT

2.5.1 Conclusion

The permutation tests:

o Different from bootstrap methods. The former are extractions without reintegration, the latter with.
The former have almost optimal properties and have (almost always) an exact control of the first type
errors.

e They constitute a general approach and are applicable in many contexts. Very few assumptions.

o some dedicated R packages:

— coin http://cran.r-project.org/web/packages/coin/index.html

permuco https://cran.r-project.org/web/packages/permuco/index.html

— flip http://cran.r-project.org/web/packages/flip/index.html (the development version is on
github https://github.com/livioivil/flip)

— flipscores http://cran.r-project.org/web/packages/flipscores/index.html (the development ver-
sion is on github https://github.com/livioivil/flipscores)

— multcomp https://cran.r-project.org/web/packages/multcomp/index.html

— GFD https://cran.r-project.org/web/packages/GFD /index.html

18
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3 Some special cases

3.1 Rank-correlation

e n observations from y, we are interested on F(y|z)

— we don’t need y; and y, do be continuous, we don’t even need to have finite moments (usual

minimal assumption).
e Hypotheses
— Hy: F(yle) = F(yla') Vo, 2!

— Hy:3z <2 : F(ylz) < F(yla') or directional such as: Hy : 3z, 2’ F(y1) # F(y2)

o Test Statistic: rank-correlation

( flip(Reaction.Time~Age, reaction, 10000, "rank"))
##
## Test Stat tail p-value

## Reaction.Time Wilcoxon 2.179 >< 0.0210

# to see the rank correlation use the workaround:

( flip(rank(reaction$Reaction.Time)~rank(reaction$ige), 10000,
##
## Test Stat tail p-value

## rank.reaction.Reaction.Time. cor 0.7153 >< 0.0221

(cor.test(reaction$Reaction.Time,reaction$ige, "spe"))

## Warning in cor.test.default(reaction$Reaction.Time, reaction$Age, method
## "spe"): Cannot compute exact p-value with ties

#i#

## Spearman’s rank correlation rho

#i#

## data: reaction$Reaction.Time and reaction$Age

## S = 46.983, p-value = 0.02005

## alternative hypothesis: true rho is not equal to O
## sample estimates:

## rho

## 0.715256

plot(res)
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Test Statistics

3.2 The Two-independent-sample problem

e Two samples:

— nj observations from y;
— ng observations from yo

— we don’t need y; and y» do be continuous, we don’t even neeD to have second (nor higher order)
finite moments, which is the usual minimal assumption.

e Hypotheses
= Ho: F(y1) = F(y2)

— Hy: F(y) # F(y2)
(or directional such as: Hy : F(y1) < F(y2))

o Test Statistic:

— Standardized mean difference (t-statistic)
— Estimated slope coefficient (label of groups as dummy predictor)

— other test statistic such as the (non standardized) mean difference are permutationally equivalent

20



data("seeds")
seeds=na.omit (seeds)

( flip(y~grp, seeds, 10000) )

##
## Test Stat tail p-value
## y t 2.061 >< 0.0511

(summary (1m(y~grp, seeds)))

##

## Call:

## lm(formula = y ~ grp, data = seeds)

##

## Residuals:

## Min 1Q Median 3Q Max

## -7.331 -2.931 -1.651 4.663 7.863

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 10.147 1.242 8.168 9e-09 *xxx%

## grp 3.345 1.623 2.061 0.049 =

#H ——-

## Signif. codes: O ’**x> 0.001 ’*x> 0.01 ’x’ 0.05 ’.” 0.1 7 > 1
##

## Residual standard error: 4.303 on 27 degrees of freedom
## Multiple R-squared: 0.136, Adjusted R-squared: 0.104
## F-statistic: 4.249 on 1 and 27 DF, p-value: 0.04903

plot(res)
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3.2.1 Rank test

Can we use rank-based statistics?

Yes, equivalent to rank-tests, we just rely on exact distribution instead of asymptotic one (and we have no
limitations with ties).

(res=flip(y~grp,data=seeds,statTest = "rank",perms=10000))

##
## Test Stat tail p-value
## y Wilcoxon 2.13 >< 0.0317

(wilcox.test(y~grp,data=seeds))

## Warning in wilcox.test.default(x = c(12.54, 14.81, 16.71, 7.53, 7.02, 8.09,
## cannot compute exact p-value with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: y by grp

## W = 53.5, p-value = 0.03353

## alternative hypothesis: true location shift is not equal to O
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3.3 Chi square and other cathegorical methods

data("seeds")
seeds$Germinated=!is.na(seeds$x)
seeds$Germinated=factor (seeds$Germinated)
seeds$grp=factor (seeds$grp)

table(seeds$grp,seeds$Germinated)

#

## FALSE TRUE
## 0 8 12
## 1 3 17

chisq.test(seeds$grp,seeds$Germinated)

#i#

## Pearson’s Chi-squared test with Yates’ continuity correction
#i#

## data: seeds$grp and seeds$Germinated

## X-squared = 2.0063, df = 1, p-value = 0.1567

( flip(Germinated~grp, seeds, "Chisq", 10000))
##
## Test Stat tail p-value

## grp_|_Germinated Chi Squared 3.135 > 0.1557

plot(res)
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. and the Fisher test:

fisher.test(seeds$grp,seeds$Germinated) $p.value

## [1] 0.1551874

(flip(Germinated~grp,data=seeds,perms=10000))

##

## Test Stat tail p-value
## GerminatedFALSE t -1.798 >< 0.1542
## GerminatedTRUE t 1.798 >< 0.1542

3.4 ANOVA (C-sample)

e.g. 3 groups of Age: young [18 — 35), middle age [35 — 60), old [60 — 100)

e C samples:

— n; observations from y; (1 =1,...,C)
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— we don’t need y; do be continuous, we don’t even need to have finite moments (usual minimal
assumption)

e Hypotheses
— Ho: F(y:) = F(y;) V(i,5)

— Hy:3(4,7) : F(y:) # Fy;))
o Test Statistic:
— F-statistic

— R?

other test statistic such as the (non standardized) mean difference are permutationally equivalent
— Rank-based is also possible

reaction$AgeCateg=cut (reaction$Age,c(18,35,65,100), FALSE)
( flip(Reaction.Time~AgeCateg, reaction, 10000, "ANQOVA"))
##

## Test Stat tail p-value

## Reaction.Time F 4.02 > 0.0838

summary (lm(Reaction.Time~AgeCateg, reaction))

##

## Call:

## Im(formula = Reaction.Time ~ AgeCateg, data = reaction)

##

## Residuals:

## Min 1Q Median 3Q Max

## -6.495 -3.279 0.465 2.246 6.112

##

## Coefficients:

#it Estimate Std. Error t value Pr(>[t])

## (Intercept) 16.157 2.331 6.932 0.000225 *xx*x*

## AgeCateg[35,65) 4.428 3.296 1.343 0.221144

## AgeCateg[65,100) 11.418 4.037 2.828 0.025478 *

## ——-

## Signif. codes: O ’*%x’ 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1’ > 1
##

## Residual standard error: 4.662 on 7 degrees of freedom

## Multiple R-squared: 0.5346, Adjusted R-squared: 0.4016

## F-statistic: 4.02 on 2 and 7 DF, p-value: 0.06878

3.4.1 Stochastic Ordering

e Same assumptions of ANOVA

e Hypotheses
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— same null hypo Hy : F(y;) = F(y;) V(i,))

— BUT H;y :3(i,j) : F(y;) < F(y;) (or >)

(more details on NPC later)

( flip(Reaction.Time~AgeCateg, reaction, 10000, 1))
##

## Test Stat tail p-value

## Reaction.Time_|_AgeCateg. [35,65). t 0.1423 > 0.4322

## Reaction.Time_|_AgeCateg. [65,100). t 2.2444 > 0.0259
npc(res)

##

## comb.funct nVar Stat p-value

## V1 Fisher 2 4.492 0.0210

3.5 Stratified permutations (discrete nuisances)

What if we want to test © = Age also using z = Gender as nuisance in the reaction data set?
Under the null hypothesis: f(y|z,2) = f(yla', z) = f(y|z) V(z,2’)
Therefore, even under the Hy, it holds f(y;) = f(y;) ONLY IF z; = z; (obs ¢ and j have the same gender).

Can e permute same as in the previous cases? NO. We permute the observations only within the strata
defined by z.

Remark:
- we don’t assume linear effect of the nuisance,
- we also allow heteroscedastic errors among strata.

(Test statistic remains the same)

( flip(Reaction.Time~Age, ~Gender, reaction, 10000))
##
## Test Stat tail p-value

## Reaction.Time t 2.633 >< 0.0684

Alternative model (more about NPC later):

( flip(Reaction.Time~Age*Gender, ~Gender, reaction, 10000))
##

## Test Stat tail p-value

## Reaction.Time_|_Age t 2.4826 >< 0.0725

## Reaction.Time_|_Age:Gender.M. t -0.6518 ><  0.3402
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npc(res)

##
## comb.funct nVar Stat p-value
## V1 Fisher 2 3.702 0.1371

4 Multivariate Testing

4.1 Seeds data

# install.packages("flip")
library(flip)

omit the NAs:

data(seeds, "flip")
seeds=na.omit (seeds)
seeds

## grp X vy
## 9 0 6.03 12.54
## 10 0 4.20 14.81
## 11 0 4.49 16.71
## 12 0 2.00 7.53
## 13 0 2.84 7.02
## 14 0 3.88 8.09
## 15 0 2.04 5.76
## 16 0 5.48 18.01
## 17 0 2.31 8.81
## 18 0 1.90 8.17
## 19 01.75 6.62
## 20 0 3.02 7.69
## 24 1 3.31 18.49
## 25 1 6.56 19.20
## 26 1 3.16 9.85
## 27 1 4.07 15.83
## 28 1 2.09 6.16
## 29 1 6.72 17.58
## 30 1 3.93 19.29
## 31 1 2.56 10.77
## 32 1 8.30 18.31
## 33 1 4.21 10.56
## 34 1 1.86 9.48
## 35 1 3.09 12.54
## 36 1 5.09 18.35
## 37 14.08 11.84
## 38 1 3.63 11.44
## 39 1 2.61 7.66
## 40 1 5.21 12.00



4.2 Marginal vs Joint distribution

Use a permutation methods to test if there is any difference between the two groups in grp on the two
variables x and y:

library(flip)
res=flip(.~grp,data=seeds,flipReturn =1list(permP=TRUE,permT=TRUE))
hist(res)
X
)
o

S < 3 tatistic

>

o

g © |

LL

-4 -2 0 2 4
Test Statistics
y

>

g o

S 9 3 statistic

>

o

o o

LL

-4 -2 0 2 4

Test Statistics

# flipReturn =list(permP=TRUE,permT=TRUE) is not really needed, we will need it later

We can perform the two tests for the two variables separately. But we don’t get the overall p-value (is there
any difference among the ANY of the two variables?)

plot(res)
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What will we see next:
- how to combine the two p-values (e.g. using the Fisher Combining Function) to test the global hypothesis
- How to use a closed testing procedure to adjust the 2 p-values: which variables?.

4.3 Rejection regions (and overall testing)

In the univariate setting it is easy to define what is far from the null hypothesis (i.e. usually from a value of
0 of the test statistic), while in the multivariate setting, there is not only one answer (nor a better one).

# install.packages("plotriz")
library("plotrix")

res.sumt2=npc(res, "sumT2", list( TRUE, TRUE) )
limsumt2=res.sumt2@permT [which.min(abs(res.sumt2@permP-0.05))]
res.sumt=npc(res, "sumT", list( TRUE, TRUE))
limsumt=res.sumt@permT [which.min(abs(res.sumt@permP-0.05))]
res.maxt=npc(res, "maxT", list( TRUE, TRUE) )

limmaxt=res.maxt@permT [which.min(abs(res.maxt@permP-0.05))]

plot(res@permT[,1],res@permT[,2], "#EF2ADOO", "#F98400", 21, "Some rejection region (alpha=.!

draw.circle(0, 0, limsumt2~.5, "red")

segments (c(limsumt,-limsumt,limsumt,-limsumt),c(0,0,0,0),
c(0,0,0,0),c(limsumt,-limsumt,-limsumt,limsumt), "green")

segments (c(limmaxt,-limmaxt,-limmaxt,limmaxt),c(limmaxt,limmaxt,-limmaxt,-limmaxt),
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c(-limmaxt,-limmaxt,limmaxt,limmaxt),c(limmaxt,-limmaxt,-limmaxt,limmaxt),col="blue")
legend("topright",legend=c("SumT"2","Sum |T|","maxT"),col=c("red","green","blue"),bty="n",lwud=2)

Some rejection region (alpha=.05)

°
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o
o
°
T °
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res@permT][, 1]

REMARK We can derive the distribution of the p-value by computing the p-value for each test statistic

(i.e. computed on observed and permuted data). We get then the multivariate distribution of the p-values,
which looks something like this one:

plot (res@permP,col="#F2AD00" ,,bg="#F98400" ,pch=21,main="Joint Distribution of p-values",asp=1)
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4.3.1 Fisher Combining Function

We inspect the rejection regions of the two univariate tests and the one of Fisher combination.
The intersection of each univariate test with the Fisher region defines the rejection region of a closed testing
- i.e. adjusted for multiple testing.
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4.3.2 Tippett (min-p) Combining Function

We inspect the rejection regions of the two univariate tests and the one of Fisher combination.

The intersection of each univariate test with the Fisher region defines the rejection region of a closed testing
- i.e. adjusted for multiple testing. This fall to be the same rejection region given by Wesfall & Young.
Indeed, it is a closed testing with shortcut.
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FWER control via Permutations tests

Permutation Bonferroni

Bonferroni is conservative

5.2

Bonferroni bound
Reject for p-values at most a/m

By Boole’s inequality
Guaranteed: FWER < «, but often FWER < «

Can we improve?
Reject for p-values at most & > a/m, while keeping FWER control

Yes we can
By permutations

Improved Bonferroni
Reduced o

Reject H; if p; < &
Control of FWER?

33



FWER = P(pi < & for at least one ¢ with H; true)

ZP( U{pz < &})
ieT
=P(nippi<a) <o

e How can we determine the value of a?
Using permutations to find the distribution of the minimum p-value

5.3 Multiple testing using permutations

The single step min-P method

Calculate the smallest p-value m for the real data

Randomly permute the data

Calculate new p-values for all tests based on permuted data

Calculate the smallest p-value m™ for permuted data

Repeat permutation many (say k=1000) times: m7,...,m]

Calculate & as the a-quantile of m7,...,mJ

Multiple testing result
Reject all hypotheses with (non-permuted) p-values at most &

5.4 Correlation structure of p-values

Permutation
- Destroys correlation between covariates and response
- Retains correlation among covariates

Consequence
- P-values of correlated tests (i.e. data) remain correlated in permutations
- Distribution of minimum p-value correctly takes correlations into account

When the gain relative to Bonferroni is the gain large?
- Negatively correlated p-values: typically no gain

- Independent p-values: minimal gain

- Positively correlated p-values: gain can be large

5.5 Westfall & Young: permutation Holm

Westfall PH, Young SS (1993) Resampling-Based Multiple Testing: Ezamples and Methods for p-Value
Adjustment. Wiley

Sequential permutation multiple testing
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e Single step
Single step min-P is permutation equivalent of Bonferroni

e What about Holm?
Permutation equivalent of Holm’s method: Westfall & Young

The min-P algorithm

e Start with all hypotheses
e Repeat

— Do single step min-P to calculate &
— Reject hypotheses with p-value < &

— Remove rejected hypotheses

e Until no new rejections occur

5.6 The general framework: Closed Testing

R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered
analysis of variance. Biometrika 63: 655-660.

Test in each node: any multivariate permutation test

Westfall & Young is a special case of closed testing (i.e. each node of the closure set uses min-p/Tippett or
max-T combining function)
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5.6.1 Closure Set

Adjusted pa = max(pa,paB,Pac,PABC)

In our data:

( flip.adjust(res, "Fisher"))

##

## Test Stat tail p-value Adjust:Fisher

## x t 1.320 >< 0.1810 0.1810

##y t 2.061 >< 0.0540 0.0880

( flip.adjust(res, "maxT"))

##

## Test Stat tail p-value Adjust:Fisher Adjus
## x t 1.320 >< 0.1810 0.1810

# y t 2.061 >< 0.0540 0.0880

5.7 Conclusion

Accounting for dependencies
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Adjusted p-value become lower (i.e. more rejections)

When?

- Negative correlation: generally no gain

p-value Independents: little or no gain

- Positive correlation: big gain, usually

(NB: a test with bi-directional alternative and with negative correlation produce p-value positively correlated)

Real data
The variables of real data sets are often correlated
then permutations are (often) convenient

How? R: library(flip); flip(); flip.adjust()

6 A case study: Pharmacokinetic Study of Carbidopa

Description:
http://webserv.jecu.edu/math//faculty /TShort/Bradstreet /part2/part2-table6.html

As part of a pharmacokinetic study, 12 healthy male subjects were allocated randomly to a three period
crossover design receiving one of three graded doses (25, 50, 100 mg) of Carbidopa q8h in each treatment
period. A seven day washout period separated the treatment periods. The pharmacokinetic variables AUC,
Cmax, and Tmax were calculated for each subject from plasma concentrations assayed from blood samples
taken at 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, and 8 hours postdosing following the second dose of carbidopa on the
sixth day of each treatment period.

dataset:
http://webserv.jcu.edu/math//faculty /TShort/Bradstreet /part2/Bradp2t6.txt

Analyze the dataset without taking in account the Study Periods (which have been randomized in each
subject, hence we can avoid to account for it in the analysis).

Research questions:

e Is there a dose response for AUC, Cmax, or Tmax? Overall?
o Can dose proportionality be established? (try to fit a linear model for each endpoint, then discuss the
results)

6.1 A solution

We answer to both first and second question with a single analysis: we perform a linear model (accounting
for individual variability) on log transformed end-points.

#Reading and make-up of the data

dati=read.table("http://webserv. jcu.edu/math//faculty/TShort/Bradstreet/part2/Bradp2t6.txt",

dati=cbind(datil,1] ,matrix(as.matrix(dati[,-1]) ,nrow(dati)*3,4))
colnames(dati)=c("Sub","Dose","AUC","Cmax","Tmax")

dati=as.data.frame(dati)
str(dati)

## ’data.frame’: 36 obs. of 5 variables:
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http://webserv.jcu.edu/math//faculty/TShort/Bradstreet/part2/part2-table6.html
http://webserv.jcu.edu/math//faculty/TShort/Bradstreet/part2/Bradp2t6.txt

## $ Sub : num 1 23456789 10 ...

## ¢ Dose: num 100 25 50 50 50 25 100 25 50 25 ...

## ¢ AUC : num 604 140 386 175 605 ...

## ¢ Cmax: num 137 44.4 86.6 46.4 194 44.9 318 29 119 58.4 ...
## ¢ Tmax: num 1.5 1 1.51.50.511122 ...

# transform all responses with log-transformed,
# so that a linear relationship between time and end-point indicates proportionality
dati[,3:5]=log(datil,3:5])

#Descriptives and plots:
summary (datil[,-11)

## Dose AUC Cmax Tmax

## Min. : 25.00 Min. :4.337 Min. :3.219 Min. :-0.6931
## 1st Qu.: 25.00 1st Qu.:5.156 1st Qu.:3.966 1st Qu.: 0.0000
## Median : 50.00 Median :5.886 Median :4.485 Median : 0.2027
## Mean : 58.33 Mean :5.873 Mean 4.547 Mean : 0.2474
## 3rd Qu.:100.00 3rd Qu.:6.539 3rd Qu.:5.280 3rd Qu.: 0.6931
## Max. :100.00 Max. :7.335 Max. :5.989 Max. : 1.0986
by(dati[,3:5] ,dati$Dose, summary)

## dati$Dose: 25

#i# AUC Cmax Tmax

## Min. :4.337 Min. :3.219 Min. :-0.6931

## 1st Qu.:4.803 1st Qu.:3.390 1st Qu.: 0.0000

## Median :4.972 Median :3.801 Median : 0.0000

## Mean 5.051 Mean :3.783 Mean : 0.2071

## 3rd Qu.:5.289 3rd Qu.:4.022 3rd Qu.: 0.6931

## Max. :5.818 Max. :4.464 Max. : 0.6931

# -

## dati$Dose: 50

## AUC Cmax Tmax

## Min. :5.133 Min :3.837 Min. :-0.6931

## 1st Qu.:5.670 1st Qu.:4.374 1st Qu.: 0.0000

## Median :5.886 Median :4.484 Median : 0.2027

## Mean :5.815 Mean :4.479 Mean : 0.1689

## 3rd Qu.:5.967 3rd Qu.:4.625 3rd Qu.: 0.4055

## Max. :6.405 Max :5.268 Max : 1.0986

## ----—-———-———------------—--

## dati$Dose: 100

## AUC Cmax Tmax

## Min. :6.164 Min :4.920 Min. :0.0000

## 1st Qu.:6.607 1st Qu.:5.229 1st Qu.:0.0000

## Median :6.782 Median :5.412 Median :0.4055

## Mean 6.751 Mean 5.378 Mean 0.3662

## 3rd Qu.:6.922 3rd Qu.:5.515 3rd Qu.:0.6931

## Max. :7.335 Max 5.989 Max. :1.0986
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par (nfrow=c(2,2))
plot(dati$Dose,dati$AUC,ylab="10g(AUC)",xlab="Dose" ,main="Dose vs log(AUC)")

r=sapply (unique (dati$Sub) ,function(s){
d=subset (dati, Sub==s)
d=d[order (d$Dose),]
lines(d$Dose, (d$AUC) ,col=s,lwd=2)1})

plot(dati$Dose,dati$Cmax,ylab="1log(Cmax)",xlab="Dose" ,main="Dose vs log(Cmax)")
r=sapply (unique (dati$Sub) ,function(s){

d=subset (dati,Sub==s)

d=d[order (d$Dose),]

lines(d$Dose, (d$Cmax) ,col=s,lwd=2)})

plot(dati$Dose,dati$Tmax,ylab="1log(Tmax)",xlab="Dose" ,main="Dose vs log(Tmax)")
r=sapply (unique (dati$Sub) ,function(s){

d=subset (dati,Sub==s)

d=d[order (d$Dose) ,]

lines(d$Dose, (d$Tmax) ,col=s,lwd=2)})

Dose vs log(AUC) Dose vs log(Cmax)

log(Cmax)
35 50

log(AUC)
45 6.0

40 60 80 100

Dose Dose

Dose vs log(Tmax)

log(Tmax)

-0.5 05

40 60 80 100

Dose

Now the analysis: A simple solution could be:
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library(flip)

res=flip(.~Dose,data=dati,Strata=~Sub,statTest = "coeff")

summary (res)

## Call:

## flip(Y = . ~ Dose, data = dati, statTest = "coeff", Strata = ~Sub)
## 999 permutations.

#t

## Test Stat tail p-value sig.

## AUC coeff 0.0221 ><  0.0010 *kx*
## Cmax coeff 0.0208 >< 0.0010 *xx
## Tmax coeff 0.0024 ><  0.2930

#here we ask for statTest = "coeff", i.e. estimated coefficient of a linear model
hist(res)
AUC Cmax
o
> o test > © test
S statistic S statistic
o
z & g ©
L e
LL LL
© | | | © | | | |
-0.01 0.00 0.01 0.02 -0.01 0.00 0.01 0.02
Test Statistics Test Statistics

Tmax
> 8 test
< istic
S 1
o —
o
L
ST T T 1T 1
-0.006 -0.002 0.002 0.006
Test Statistics
Multivariate:
e Overall

res=flip.adjust(res)
npc(res, "Fisher")
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##
#i# comb.funct nVar Stat p-value
## V1 Fisher 3 15.04 0.0010

There is an effect of Dose, overall.

e By end-points (closed testing with max-t combining function). Try also different methods
(e.g. method="Fisher") and compare the results of method="minP" with the one of method="Holm".

res=flip.adjust(res, "holm")

res=flip.adjust(res, "Fisher")

summary (res)

## Call:

## flip(Y = . ~ Dose, data = dati, statTest = "coeff", Strata = ~Sub)

## 999 permutations.

##

## Test Stat tail p-value Adjust:maxT Adjust:holm Adjust:Fisher sig.
## AUC coeff 0.0221 >< 0.0010 0.0010 0.0030 0.0010 *x*x
## Cmax coeff 0.0208 >< 0.0010 0.0010 0.0030 0.0010  *x*x*
## Tmax coeff 0.0024 >< 0.2930 0.2930 0.2930 0.2930

AUC and Cmax show a significant effect after correction for multiplicity, while Tmax does not.

7 (minimal) Bibliography

The Grounding Theory:
- Pesarin (2001) Multivariate Permutation Tests: With Applications in Biostatistics by Fortunato, Wiley,
New York

An alternative approach to the Permutation testing:
- Hemerik J, Goeman J. Exact testing with random permutations. Test (Madr). 2018;27(4):811-825. doi:
10.1007/s11749-017-0571-1. Epub 2017 Nov 30. PMID: 30930620; PMCID: PMC6405018.

A flexible approach to General Linear Model based on the sign-flip score test:

- Hemerik, Goeman and Finos (2020) Robust testing in generalized linear models by sign flipping score
contributions. Journal of the Royal Statistical Society Series B (Statistical Methodology) 82(3). DOLI:
10.1111/rssb.12369

Implemented in R package flipscores:

https://cran.r-project.org/web/packages/flipscores/index.html

better to use the github develop version:

https://github.com /livioivil /flipscores

A nice review of the regression model within the permutation framework:

- Anderson M. Winkler, Gerard R. Ridgway, Matthew A. Webster, Stephen M. Smith, Thomas E. Nichols
(2014) Permutation inference for the general linear model, Neurolmage, Volume 92, Pages 381-397, ISSN
1053-8119 https://doi.org/10.1016/j.neuroimage.2014.01.060
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